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This study aims to analyze poverty using spatial models. The researchers also 

compared the Spatial Error Model (SEM) and Geographically Weighted Regression 

(GWR). The comparison of the two models was based on the estimation evaluation 

criteria and the constructed spatial associations. Spatial regression is considered 

very appropriate to be used to model the relationship pattern between poverty and 

explanatory variables when the observed data has a spatial effect caused by the 

proximity between the observation areas. The spatial dependence of errors on 

observational data can be overcome using SEM, while the effect of heterogeneity 

of spatial variance can overcome using GWR. 
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Introduction 
 

Poverty is one of the fundamental problems concerned by all countries in the world 

(Atkinson, 1987; Ferezagia, 2018; Nurwati, 2008), including Indonesia. Poverty can be 

overcome by correctly identifying the variables that have a real effect on poverty. The poverty 

of a region cannot be separated from the influence of the poverty of other regions around it. This 

problem requires special attention to spatial effects in modeling poverty data (Djuraidah & 

Wigena, 2012). Spatial regression is an approach that can be used to model spatial influence data, 

both spatial dependence and spatial heterogeneity (Anselin, 2009). 

Spatial Autoregressive (SAR) model and the Spatial Error Model (SEM) can be used on 

spatial dependency cases (Kelejian & Prucha, 2010; Lee & Yu, 2010). On the other hand, the 

Geographically Weighted Regression (GWR) model can be used on spatial heterogeneity 

cases.(Charlton et al., 2009). Based on these considerations, the poverty data for districts or cities 

in East Java can be modelled using the Spatial Regression Model. By applying the Spatial 

Regression Model in modelling the poverty data, a complete picture of the variables that affect 

poverty can be illustrated. 

Several research has been done on spatial modeling, whether it's SAR, SEM, and even those 

involving extreme values (Kelejian & Prucha, 2010; Lee & Yu, 2010; Putra et al., 2020; Rinaldi 

et al., 2017; Zhang et al., 2021). The GWR spatial model has also been studied and researched 

(Griffith, 2008; Zhou et al., 2019; Zhu et al., 2020). However, previous research was focused on 

separate modelling. Therefore, this study aims to examine the spatial models and compare the 

advantages of the models as a whole, even in analytical form. 
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The Research Methods 
 

 

In general, the form of the mean and variance functions for multiple regression is denoted as 

follows: 

𝑬(𝒀|𝑿) =  𝜷𝟎 + 𝜷𝟏𝑿𝟏 + 𝜷𝟐𝑿𝟐 + ⋯ + 𝜷𝒑𝑿𝒑   (1) 

𝐕𝐚𝐫(𝐘|𝐗) = 𝛔𝟐 

𝛽𝑖 for 𝑖 = 0, 1, 2, … , 𝑝 or 𝜎2 are unknown parameters and must be estimated (Draper & Smith, 

1998; Fox & Weisberg, 2018; Montgomery et al., 2021; Myers, 1990; Timm, 2002; Weisberg, 

2013).  

 For example, for n observational data, the response variables and explanatory variables 

are defined in the form of vectors and matrices: 

𝐘 = (

y1

y2

⋮
yn

)     𝐗 = (

1 x11

1 x21

… x1p

… x2p

⋮ ⋮
1 xn1

⋱ ⋮
… xnp

) 

 

Y is a vector of n x 1 and X is a matrix of n x (p+1). The regression coefficient is denoted as 𝜷, 

which is a vector of (p + 1) x 1, where e is a residual vector of (n 1). 

𝜷 = (

𝜷𝟎

𝜷𝟏

⋮
𝜷𝒑

)   𝒆 = (

𝒆𝟏

𝒆𝟐

⋮
𝒆𝒏

)  

The multiple regression matrix can be written as follows: 

𝒀 = 𝑿𝜷 + 𝜺       (2) 

Assuming the model: 𝜺 ~ 𝑵(𝟎, 𝝈𝟐𝑰𝒏) 

 The least squares method is used to estimate the parameters 𝜷 by minimizing the sum of 

the residual squares.  

𝑱𝑲(𝒆) =  ∑ 𝒆𝒊
𝟐 = ∑(𝒚𝒊 − �̂�𝒊)

𝟐 = ∑(𝒚𝒊 − 𝒙𝒊
′𝜷)𝟐 

 = (𝒀 − 𝑿𝜷)′(𝒀 − 𝑿𝜷) 

By deriving the above equation with the parameter 𝜷, the estimator will be: 

�̂� = (𝑿′𝑿)−𝟏(𝑿′𝒀) whereas for 𝑽𝒂𝒓(�̂�) = (𝑿′𝑿)−𝟏 

The assumptions in the classical regression model are: 

 

1. E(𝛆𝐢) = 0, for i = 1, 2, …, n; therefore, the expected value becomes: 

 

E(𝐲i) = β0+ β1𝐗i1+ β2𝐗i2+ …+βp𝐗ip  

 

2. Var(𝛆𝐢) = σ2, for i = 1, 2, …, n, or equal to Var(𝐲𝐢) = σ2  

 

3. Cov (𝛆𝐢, 𝛆𝐣) = 0, for i≠j.  
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General Spatial Regression Model (GSM) 

 The general model of spatial regression is: 

𝐘 = 𝛒𝐖𝐲 + 𝐗𝛃 + 𝐮      (3) 

𝐮 = 𝛌𝐖𝐮 + 𝛆       (4) 

𝛆~𝐍(𝟎, 𝛔𝟐𝐈) 

y is the dependent variable of n × 1, X is the matrix of independent variables of (n x (p+1)), 𝛃  is 

the vector of regression parameter coefficients of p × 1, ρ is a spatial lag autoregression 

coefficient, 𝜆 is an autoregression coefficient spatial error value of |𝜆| < 1, u is an error vector 

which is assumed to contain autocorrelation of n × 1, W is the spatial weighting matrix of n × n, 

n is the number of observations (Anselin, 2009; Blangiardo & Cameletti, 2015; LeSage & Pace, 

2009). The estimation parameter in GSM model is obtained using maximum probability 

estimation method (Arbia & Baltagi, 2008; LeSage & Pace, 2009; Schabenberger & Gotway, 

2017). Based on equation (2), it can be expressed as:  

𝐲-ρ𝐖𝐲 = 𝐗β +𝐮 or  

I−ρ𝐖 𝐲 = 𝐗β +𝐮       (5)                                     

Equation (3) can be expressed as:                                                                                                       

(𝐈-λ𝐖) 𝐮 = ε or 𝐮 = (𝐈-λ𝐖)𝟏ε     (6)  

By substituting equation (6) into equation (5): 

(𝐈-ρ𝐖) 𝐲 = 𝐗β +(𝐈-λ𝐖)𝟏ε  

(𝐈-λ𝐖)𝟏ε = (𝐈-ρ𝐖) 𝐲-𝐗β  

If all sides are multiplied by (𝐈-λ𝐖), then:  

ε = (𝐈-λ𝐖) (𝐈-ρ𝐖) 𝐲-𝐗β     (7) 

The value of the probability function of the variable ε is:  

L (σ2; 𝛆) =c(𝛆)|𝐕|−𝟏/𝟐 exp [
−𝟏

𝟐𝝈𝟐 𝜺𝒕𝜺 ]     (8)  

Where V is the ε covariance matrix of 𝐕=σ2𝐈. The determinant of the matrix V is σ2n and the 

reciprocal of the covariance matrix of 𝐕-𝟏=1/(σ2𝐈). By substituting the value of |V| and 𝐕-𝟏 in 

equation (8), it is obtained that:  

L (σ2; 𝛆) =c(𝛆)σ2n exp [
−𝟏

𝟐𝝈𝟐 𝜺𝒕𝜺 ]    (9)  

From the ε and y relationship in equation (7), the Jacobian value is:  

J=|
𝝏𝜺

𝝏𝒚
|𝐈-λ𝐖| |𝐈-ρ𝐖|  

By substituting equation (7) into equation (9), the probability function for y will be: 

L (ρ, λ, σ2, 𝛃; 𝐲) =c(𝐲) (σ2) −n/2 |𝐈−λ𝐖| |𝐈−ρ𝐖|  

exp[−
𝟏

𝟐𝝈𝟐
{(𝑰 − 𝝆𝑾)[(𝑰 − 𝝆𝑾)𝒚 − 𝑿𝜷]}𝑻{(𝑰 − 𝝆𝑾)[(𝑰 − 𝝆𝑾)𝒚 − 𝑿𝜷]}]  

The log-likelihood function obtains the following equation (10): 

ln L (ρ, λ, σ2, 𝛃; 𝐲) = ln(c(𝐲)) – 𝑛/2 ln(σ2) + ln|I−λW| +ln|I−ρW|  

−
𝟏

𝟐𝝈𝟐
{(𝑰 − 𝝆𝑾)[(𝑰 − 𝝆𝑾)𝒚 − 𝑿𝜷]}𝑻{(𝑰 − 𝝆𝑾)[(𝑰 − 𝝆𝑾)𝒚 − 𝑿𝜷]} 

 

Suppose the square of the weighting matrix (𝐈-ρ𝐖) 𝐓(𝐈-ρ𝐖) is denoted as Ω and estimator β is 

obtained by maximizing the log probability function in equation (10), then the parameter 

estimator β is: 

�̂� = (𝐗′𝛀𝐗)−𝟏𝐗′𝛀(𝐈 − 𝛌𝐖)𝐘 
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Spatial Lag Regression (SAR) Model 

 If ρ≠0 and λ=0, then equation (3) is the general form of the spatial regression model into 

a spatial lag regression model: 

𝐲= ρ𝐖𝐲 +𝐗𝛃+ 𝛆       (11)  

𝛆 ~ N (0, σ2I) 

Response variables in the SAR model are spatially correlated. The maximum likelihood method 

can be used to estimate the parameters of this model (Lawson, 2013; Ver Hoef et al., 2018; Zhang 

et al., 2021).  

In equation (11), εi is assumed to be normally distributed, stochastically free, identical, with a 

mean of zero, and a variance of σ2. εi is the error at the location of i. 

The probability density function of εi: 

f(εi)  =
1 

σ√2π
exp [−

εi
2

2σ2
]  

Joint probability density function of n random variables 1, 2,…, εn: 

f(𝛆) =f(ε1). f(ε2) …f(εn)  

= (2𝜋𝜎2)−
𝑛

2  exp (–
∑  𝑛

𝑖=1 𝜀𝑖
2

2𝜎2 )  

= (2𝜋𝜎2)−
𝑛

2  exp [−
εTε

2𝜎2] 

The density function with the response variable y is obtained by transforming an n-dimensional 

𝛆 space into an n-dimensional y space. From equation (11), it is obtained that: 

𝛆=𝐲− ρ𝐖𝐲−𝐗𝛃  

The joint probability density function of n response variables y is: 

f(𝐲) = f(𝛆)|J|  

=exp [−
𝜀𝑇𝜀

2𝜎2] |
dε

dy
|  

= (2πσ2)−
𝑛

2  exp [–
(𝐲−ρ𝐖𝐲−𝐗𝛃)T(𝐲−ρ𝐖𝐲−𝐗𝛃 )

2σ2 ] |𝐈 − ρ𝐖|  

The probability function of the response variable y: 

L (𝛃, ρ, σ2; 𝐲) = f (𝐲; 𝛃, ρ, σ2)  

=|I−ρ𝐖|(2πσ2)−
𝑛

2  exp [–
(𝐲−ρ𝐖𝐲−𝐗𝛃)T(𝐲−ρ𝐖𝐲−𝐗𝛃 )

2σ2
] |𝐈 − ρ𝐖|  (12)  

 

The estimation of the model parameters is obtained by maximizing the probability function 

which is equivalent to maximizing the logarithm of the probability function in equation (12). 

ln (L (𝛃, ρ, σ2; 𝐲) = ln {|𝑰 − 𝝆𝑾|(𝟐𝝅𝝈𝟐)−
𝒏

𝟐𝐞𝐱 𝐩 [–
(𝒚−𝝆𝑾𝒚−𝑿𝜷)𝑻(𝒚−𝝆𝑾𝒚−𝑿𝜷 )

𝟐𝝈𝟐 ] |𝑰 − 𝝆𝑾|} 

     = −
𝒏

𝟐
𝒍𝒏𝟐𝝅 −

𝒏

𝟐
𝒍𝒏𝝈𝟐 + 𝒍𝒏|𝑰 − 𝝆𝑾|–

(𝒚−𝝆𝑾𝒚−𝑿𝜷)𝑻(𝒚−𝝆𝑾𝒚−𝑿𝜷 )

𝟐𝝈𝟐   (13)  

 

The estimation for 2, β, and ρ is obtained by maximizing the log probability function in 

equation (13). The estimator for 2 is: 

�̂�𝟐 =
(𝒚−𝝆𝑾𝒚−𝑿𝜷)𝑻(𝒚−𝝆𝑾𝒚−𝑿𝜷 )

𝒏
       (14)  
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Equation (14) can be written as: 

𝝈𝟐 = ∑
(𝒚𝒊−𝒚�̂�)𝟐

𝒏
=

𝑱𝑲𝑮

𝒏
  

Where yi is the response variable at location i, �̂�i is the estimator value of the dependent 

variable at location i, n is the number of observations, and JKG is the number of squared errors. 

Estimator for β is:  

�̂� =(𝐗T𝐗)-1𝐗T𝐲−(𝐗T𝐗)-1�̂�𝐖𝐲  

and the estimator for ρ is: 

�̂� =(𝐲T𝐖T𝐖𝐲) −1 𝐲T𝐖T𝐲 

2.4. Error Spatial Regression Model (SEM) 

If ρ=0 and λ≠0, then equation (3) which is the general form of the spatial regression 

model becomes the form of the spatial error regression model which can be written as: 

𝒚 = 𝑿𝜷 + 𝒖, 𝒖 = 𝝀𝑾𝒖 + 𝜺      (15) 

 where is assumed 𝜺~𝑵(𝟎, 𝝈𝟐𝑰) 

The spatial error model is a linear regression model in which the error variable has a spatial 

correlation due to the existence of explanatory variables that are not included in the linear 

regression model. Therefore, it will be calculated as an error and that variable is spatially 

correlated with errors in other locations. The spatial error parameters model can be estimated 

using the maximum likelihood method (Anselin & Florax, 2012; Anselin & Kelejian, 1997; 

Baltagi & Li, 2001).  

The probability density function of 𝛆𝐢:  

f(εi) = 
1

σ√2π
exp [−

εi
2

2σ2] 

Joint probability density function of n random variables 1, 2…, n 

f(𝛆) =f(ε1). f(ε2) …f(εn)  

= (2πσ2)−
n

2  exp (–
∑  n

i=1 εi
2

2σ2 )  

= (2πσ2)−
n

2  exp [−
εTε

2σ2] 

The density function with the response variable y is obtained by transforming an n-

dimensional 𝛆 space into an n-dimensional y space. From equation (15), it can be obtained: 

𝐮=𝐲−𝐗𝛃 dan  

𝛆= (I− λ𝐖𝐮) 𝐮  

Therefore, 𝛆= (𝐈− λ𝐖𝐮) (𝐲−𝐗𝛃) 

The joint probability density function of n response variables y: 

f(𝐲) = f(𝛆)|J|  

=(2𝜋𝜎2)−
𝑛

2 exp [−
𝜀𝑇𝜀

2𝜎2] |
dε

dy
|  

= (2𝜋𝜎2)−
𝑛

2  exp [−
[(𝐈− λ𝐖)(𝐲−𝐗𝛃 )]T[ (𝐈− λ𝐖)(𝐲−𝐗𝛃)]

2σ2   ] |𝐈 − λ𝐖| 

The probability function of the variable y: 

L (𝛃, λ, σ2; 𝐲) = f(𝐲; 𝛃 , λ, σ2 ) 

=(2𝜋𝜎2)−
𝑛

2  |I − λW| exp [− 
[(𝐈− λ𝐖)(𝐲−𝐗𝛃 )]T[ (𝐈− λ𝐖)(𝐲−𝐗𝛃)]

2σ2 ]  (16) 

The logarithm of the probability function above is: 

ln (L (𝛃, λ, σ2; 𝐲)  
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= ln{(2𝜋𝜎2)−
𝑛

2  |I − λW| exp [− 
[(𝐈− λ𝐖)(𝐲−𝐗𝛃 )]T[ (𝐈− λ𝐖)(𝐲−𝐗𝛃)]

2σ2
]}  

= −
n

2
ln2π −

n

2
lnσ2 + ln |I − λW|  −  

[(𝐈− λ𝐖)(𝐲−𝐗𝛃 )]T[ (𝐈− λ𝐖)(𝐲−𝐗𝛃)]

2σ2  (17) 

The estimation for σ2, 𝛃 and λ is obtained by maximizing the log-likelihood function in equation 

(17). 

The estimator for σ2 is: 

σ̂2 =
[(𝐈 − λ𝐖)(𝐲 − 𝐗�̂�)]

T
(𝐈 − λ𝐖)(𝐲 − 𝐗�̂�)]

n
   

The estimator for 𝛃 is: 

�̂� = [(𝐗 − �̂�𝐖𝐗)
𝐓

(𝐗 − �̂�𝐖𝐗 )]−𝟏 (𝐗 − �̂�𝐖𝐗)
𝐓

(𝐲 − �̂�𝐖𝐲)  

To estimate the 𝜆 parameter, a numerical iteration is needed to get an estimator for 𝜆 that 

maximizes the probability log function (Bivand et al., 2008). 

 

2.5. Spatial Weighted Regression Model (GWR) 

 

The GWR model equation is: 

𝐲𝐢 = 𝛃𝟎(𝐮𝐢, 𝐯𝐢) + ∑ 𝛃𝐤(𝐮𝐢, 𝐯𝐢)𝐱𝐢𝐤 + 𝛆𝐢
𝐩
𝐤=𝟏    (18) 

Where (ui, vi) represents the coordinates (longitude, latitude) of the i-th location. 

The GWR parameters can be estimated using the weighted least squares approach(Griffith, 2008; 

Tasyurek & Celik, 2020; Zhu et al., 2020), obtained: 

�̂�(𝐮𝐢, 𝐯𝐢) = [𝐗𝐓𝐖(𝐮𝐢, 𝐯𝐢)𝐗]−𝟏𝐗𝐖(𝐮𝐢, 𝐯𝐢)𝐲 

𝐖(𝐮𝐢, 𝐯𝐢) is a diagonal weighting matrix of n x n, where the diagonal element is the weighting 

of the i-th location whose value is determined by the distance between observation locations 

based on coordinates (longitude, latitude). 

The initial stage of GWR modeling is to determine the optimum bandwidth value that minimizes 

the value of cross validation (CV). 

𝐂𝐕 = ∑[𝐲𝐢 − �̂�≠𝐢(𝐛)]𝟐

𝐧

𝐢=𝟏

 

In this study, the weighting function used is the Gaussian kernel function: 

𝐖(𝐮𝐢, 𝐯𝐢) = 𝐞𝐱𝐩 [−
𝟏

𝟐
(

𝒅𝒊𝒋

𝒃
)

𝟐

] 

dij: Distance between i-th and j-th 

b: Optimum bandwidth. 

The Analysis of Variance (ANOVA) is used to determine the effectiveness of the GWR model 

on classical regression. 

 

2.6. Model Assumption Test 

To check the assumptions of the first model, the Kolmogorov Smirnov statistical test is used 

(Lilliefors, 1967). 
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Several test methods can be used to determine the spatial effects (spatial dependence and 

spatial diversity on the data). In this study, the spatial dependence test used the Lagrange 

multiplier test, while the Breusch-Pagan test was used to test the spatial diversity. The spatial 

dependence is tested by the Lagrange Multiplier test (Anselin, 1988).  

The Lagrange Multiplier (LM) statistic: 

 

LM = E-1 {(Ry)2T – 2RyReT+ (D+T)} ~ 𝜒2
(𝑞) 

Where:  

𝐑𝐲: 𝐞T𝐖𝐲/ σ2  

𝐑𝐞: 𝐞T𝐖e/ σ
2  

𝐌: I−𝐗(𝐗T𝐗)-1𝐗T  

Tij: tr {𝐖i𝐖j+ 𝐖i
T 𝐖j}  

D: σ−2(𝐖𝐗𝛃) T M (𝐖𝐗𝛃)  

E: (D+T) T− (T)2  

q: Number of spatial parameters  

T = tr {(WT +W) W}  

LM test criteria:  {
≤  𝛘𝟐(𝐪), 𝐇𝟎 𝒊𝒔 𝒂𝒄𝒄𝒆𝒑𝒕𝒆𝒅

>  𝛘𝟐(𝐪), 𝐇𝟎 𝒊𝒔 𝒓𝒆𝒋𝒆𝒄𝒕𝒆𝒅 
 

 

To test the spatial diversity, the Breusch-Pagan  test is used (Breusch & Pagan, 1979). The 

tested hypotheses are: 

H0∶ σ1
2= σ2

2=⋯= σn
2= σ2 (same variance) 

H1: There is at least one σi
2 ≠ σ2 (there is variation between regions) 

The Breusch-Pagan (BP) test statistic is: 

BP= (1/2) 𝐡T𝐙 𝐙T𝐙−1𝐙T𝐡~ χ2
(p)  

The vector element h is: 

ℎ𝑖 = (
𝑒𝑖

2

𝜎2
) − 1  

ei is the square of the error for the i-th observation and Z is the y vector of n × 1 that has been 

standardized for each observation.  

BP test criteria {
≤  𝛘𝟐(𝐪), 𝐇𝟎 𝒊𝒔 𝒂𝒄𝒄𝒆𝒑𝒕𝒆𝒅

>  𝛘𝟐(𝐪), 𝐇𝟎 𝒊𝒔 𝒓𝒆𝒋𝒆𝒄𝒕𝒆𝒅 
 

 

The Results of the Research and the Discussion 
 

The classical regression model is an appropriate approach when the observed responses 

are independent and normally distributed. This model can be used to model poverty data based 

on the percentage of poor people as the response variable that has a normal distribution as 

indicated by the significance value (p-value) of the Kolmogorov-Smirnov, which is greater than 

0.05 (Figure 1). Therefore, at the initial stage, the classical regression model is used to see how 
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well this model explain the pattern of the relationship between the responses, namely the 

percentage of poor people (y) and the explanatory variables consisting of the open unemployment 

rate (x1), the percentage of the illiterate population (x2), the percentage of the population working 

in the informal sector (x3), the maximum education level is junior high school/equivalent (x4), 

the underemployment rate (x5), the gross regional domestic product of primary sector (x6), and 

income inequality of Gini coefficient (x7).  

 

 
Figure 1. The Normality Test of the Variable Percentage of Poor Population Using 

Kolmogorov-Smirnov 
 

Furthermore, based on the results of the model estimation parameters (Table 1), this 

model can explain 80% of the percentage diversity of the poor indicated by an R2 value of 0.80. 

However, judging from the significance value of the t-test, only two of the seven explanatory 

variables that have significant relationship at 0.05, namely the percentage of the illiterate 

population (x2) and the underemployment rate (x5). Besides, multicollinearity presents among 

the explanatory variables as indicated by the VIF of the percentage of the population working in 

the informal sector whose value is more than 10. This result shows that the classical regression 

model with seven explanatory variables is not the best model. 
 

Table 1. Alleged Classical Regression Model with Six Explanatory Variables 

Explanatory  

Variables Coefficient    Standard Error       tobserved         p-value       VIF 

Constant       9.508     9.816    0.97  0.340 

x1           -0.251    0.903  -0.28  0.783    2.1 

x2            0.512    0.134    3.83  0.001**    3.8 

x3           0.026  0.098    0.27  0.789  13.4 

x4           -0.006    0.110  -0.05  0.957    9.2 

x5           0.209  0.095    2.19  0.036*  6.4 

x6          -0.104  0.074  -1.41  0.170    7.5 

x7            -19.900     18.160  -1.10  0.282    1.6 

R2: 0.800         R2(adj): 0.753 

Significance * 0.05 ** 0.01 
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At the next stage, the best regression model was selected using the Backward method (see 

Appendix 3). Based on the best selected classical regression model, two explanatory variables 

that had significant effects were the percentage of the illiterate population (x2) and the 

underemployment rate (x5). By using only two explanatory variables, this model can explain 

77.8% of the dependent variable variability. The remaining 22.2% was explained by other 

variables outside the model. Since the VIF of each variable below 10, the two independent 

variables that build this model were also free from multicollinearity. 
 

Table 2. The Best Classical Regression Model with Two Explanatory Variables 

Explanatory 

Variable Coefficient Standard Error     t0bserved P-value VIF 

Constant 3.102  1.379  2.25  0.031* 

x2  0.490  0.117  4.19  0.000**  3.0 

x5  0.158  0.064  2.47  0.019* 3.0 

R2: 0.778          R2(adj): 0.765          AIC :192.41  

Significance * 0.05 ** 0.01 

 

Classical Assumption Test 

After obtaining the best classical regression model, it was necessary to test the model 

assumptions to see the feasibility of the model. The tests consisted of the normality of error, 

freedom of error, and homogeneity of variance error. The normality of error was estimated using 

the Kolmogorov-Smirnov test (Figure 2), where the significance value was above 0.15. The result 

indicated that the error distribution had met the normality assumption. 

 

 
Figure 2. The Normality of Error Test on the Best Classical Regression Model Using 

Kolmogorov-Smirnov 
 

The freedom of error was tested using the Durbin Watson (DW) test. The obtained DW 

value was 1.55 with a significance value of 0.05. This result shows that the freedom of error 

assumption of the classical regression was not fulfilled. On the other hand, the Breusch-Pagan 

(BP) statistic values of 6.42 and 0.04 indicated that there was a violation of the assumption of 

homogeneity variance error. Since it does not fulfill some of the assumptions, the classical 
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regression model is not considered appropriate for modeling poverty of East Java’s cities and 

regencies. 
 

1. Spatial Regression Model 

Identifying Spatial Influence 

The assumption violation of the freedom of error and the homogeneity of variance error 

in classical regression of regional observations shows that there is a spatial influence on spatial 

dependence and spatial heterogeneity that have not been handled in the model. 

Moran Index statistic is used to generally identify spatial dependence. Based on Appendix 

4, the Moran Index statistic value is 0.0978 with a significance value of 1.341e-05. This result 

shows that there is a spatial dependence of the poor people percentage in adjacent areas. This 

spatial dependence is also supported by the local Moran Index statistics (Appendix 5) and the 

Moran Index’s scatter diagram plot (Appendix 6). 

Slightly different from the Moran Index, the Lagrange Multiplier (LM) test is used to 

identify spatial dependencies, either the spatial dependence in lag or error. From the results of 

the LM test (Table 3), the statistical significance value of the LM-SEM model (LMerr) is 0.028. 

It indicates that there is a spatial dependence of error, so that the formation of the SEM model 

can be done. Furthermore, the statistical significance values of LM-SAR model (LMerr) and 

GSM model are more than 0.05, which indicates that there is no spatial lag dependence or the 

combination between error and lag. Therefore, there is no need to build SAR and GSM models. 
 

Table 3. Spatial Dependency Test with Lagrange Multiplier 

Model  Statistics    Parameter           P-value 

LMerr      4.858              1                  0.028 * 

LMlag                1.997              1                  0.158 

GSM                  4.859              2                  0.088 

Significance * 0.05 

 

2. Spatial Error Regression Model (SEM) 

The Estimation of SEM Model Parameters 

SEM model is a spatial approach to overcome spatial effects, especially error dependence. 

This model can handle the dependence of error, as shown by the coefficient of 0.828, which is 

higher than the coefficient of determination of the classical regression model (Table 4). Besides 

explaining 82.8 percent of the variance in the percentage of poor people, this model’s AIC and 

log likelihood are lower than the classical regression model (187.83 and -88.92). By judging the 

estimated model parameters, all SEM parameters are at the significant level of 0.05. In other 

words, the two explanatory variables (the percentage of the illiterate population and the 

underemployment rate) statistically have significant influences on the percentage of the poor 

population. 

Table 4. Estimated Parameters of the SEM Model with Two Explanatory Variables 

Explanatory 

Variables                Coefficient    Error Standard Z-value  P-value 

Konstanta                   3.249            1.278              2.54              0.011* 

x2                         0.488            0.121              4.05              0.000** 

x5                                0.151           0.057              2.62              0.009** 
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Lambda  0.339   0.108              3.14              0.002** 

R2: 0.828         AIC: 187.83        

Significance * 0.05 ** 0.01 

 

SEM Model Assumption  

Similar with the classical regression model, several classical assumptions must also be 

met in the SEM model, including the normality of error, freedom of error, and homogeneity of 

variance of error. Based on the error distribution plot of the SEM model (Figure 3), this model’s 

Kolmogorov-Smirnov statistical significance value is greater than 0.15. Therefore, the SEM error 

flfills the normality assumption. 

 

 
Figure 3. The Normality Test on SEM model error with Two Explanatory Variables using 

Kolmogorov-Smirnov 
 

The examination of the assumption of freedom on SEM model error can be seen from the 

Moran Index statistics, which is 0.065 and the significance value of 0.474. It means that SEM 

model error fulfills the assumption of freedom or there is no spatial dependence. Besides, the 

Breusch-Pagan statistic’s value is 4.31 with a significance value of 0.116. It indicates that the 

SEM model error has fulfilled the assumption of homogeneity of variance error. 

By fulfilling several classical assumptions, the SEM model with two explanatory 

variables is considered capable of overcoming the spatial effects, both error dependence and 

heterogeneity of variance error. Thus, this model is suitable to model East Java’s poverty data. 

 

1. Geographically Weighted Regression Model (GWR) 

GWR Model Parameter Estimation 

Geographically Weighted Regression Model or GWR is an approach to overcome the 

variety of errors caused by spatial influences. GWR is basically a development of the classical 

regression model into a geographically weighted regression model. The classical regression 

model produces estimates of global parameters that are generally applicable to all observed 

locations. However, the GWR model produces local parameter estimates in each observed 

location. 
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The initial stage of GWR modeling is to determine the optimum bandwidth value that 

minimizes the cross validation (CV) value using the Gaussian Kernel weighting function. After 

a certain number of iterations, the minimum CV is 269.42 and the optimum bandwidth is 0.4584. 

With this optimum bandwidth value, the parameter estimation of the GWR model is carried out. 

The summary of the estimated results is displayed in Table 5. 
 

Table 5. The Summary of GWR Model Parameter Estimates 

Variable Min.  1st Qu.  median   3rd Qu.     Max.          Global 

Konstanta           0.637             2.605          3.016         4.055         13.590         3.102 

x2             0.280             0.532          0.580         0.659           0.774         0.490 

x5                      -0.325             0.099          0.143         0.165           0.266         0.159 

R2: 0.904         AIC: 163.81        

 

Based on the Anova analysis on the effectiveness of the GWR model on the classical 

regression model (Table 6), a significance value of 0.026 was obtained. It means that the 

Geographically Weighted Regression model is more effective in describing the relationship 

between the response variables and the explanatory variables. 
 

Table 6. The Effectiveness Variance Analysis of the GWR on Classical Regression 

Sources                                  df           SS            MS          Fobserved          P-value 

OLS Residuals               3.000      285.01                 

GWR Improvement            11.807     162.21     13.739         

GWR Residuals                  23.193     122.80       5.295        2.595           0,026 

 

GWR Model Assumption Check 

Kolmogorov Smirnov's statistical significance value of the GWR error is greater than 

0.15. It means that the GWR error has fulfilled the normality assumption. 

 

 
Figure 4. The Normality Test of GWR Model Error with Two Explanatory Variables Using 

Kolmogorov-Smirnov 
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The assumption of freedom of the SEM model error can be seen from the Moran Index 

statistics. The result of the calculation is 0.065 with a significance value of 0.474. It means that 

the SEM model error fulfills the assumption of freedom or there is no spatial dependence. 

Furthermore, the Breusch-Pagan statistic’s value is 4.31 with a significance value of 0.116. It 

indicates that the SEM model error has met the assumption of homogeneity of variance. 

2. The Comparison of Classical Regression Model, SEM, and GWR 

The coefficient determination value of the GWR model is higher than the classical 

regression model and SEM. It indicates that this model is better in explaining the poor people 

percentage diversity as a response than the classical regression model and the SEM model. Also, 

the GWR model’s low AIC statistics indicates that this model can reduce the spatial effect of the 

data observed regionally. 
 

Conclusion and Suggestion  
 

Based on the results and discussions, the following conclusions can be drawn: 1) the 

spatial regression approach is considered very appropriate to be used to model the relationship 

pattern between the response and the explanatory variables when the observed data has a spatial 

effect caused by the proximity between the observation areas; 2) The effect of spatial dependence 

of error on observational data can be overcome by using the Spatial Error Regression Model 

(SEM), while the effect of spatial variance heterogeneity can be overcome by the Geographically 

Weighted Regression model (GWR). 

If the spatial dependence and spatial heterogeneity influence the observation data 

simultaneously, a hybrid model from several models is considered worthy to be applied. In the 

case when the observation data has the effect of dependence and spatial heterogeneity at the same 

time, the use of a hybrid model from the SEM and GWR models is recommended for further 

research. 
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